Beijing 010-82611269,13671083121
Shandong 0532-82861228,15563963062
Xian 029-81124223
/ En

CoreScanner芯体密度X-光扫描成像与元素分析系统

CoreScanner芯体密度X-光扫描成像与元素分析系统

CoreScanner芯体密度X-光扫描成像与元素分析系统
  • 发布时间: 2018-11-15 10:13
  • 发布人:
  • 点击量: 3364

Core Scanner芯体密度X-光扫描成像与元素分析系统

blob.png

Core Scanner芯体密度X-光扫描成像与元素分析系统结合了X-射线荧光分析(X-ray Fluorescence)、数字X-射线密度成像(digital x-ray micro radiography)和高分辨率数字光学成像技术,实现多种样芯的非接触式测量,用于土壤、土芯、海洋或湖底的沉积物、岩石、洞穴堆积物(如钟乳石),泥炭块、岩芯等的密度和元素分析。可测量的元素有Al、Si、S、Cl、K、Ca、Cr、Mn、Fe、Cu、Zn、As、Hg、Pb等,其中许多可测至痕量水平以下,对灵敏度和分辨率要求较高的研究尤其适合。系统可应用于土壤分析,环境污染调查、地质勘探、海洋研究等领域。

原理:

土壤元素分析系统采用XRF、数字X-射线密度成像和高分辨率数字光学成像技术,非破坏性测量,获得样品高分辨率的数码图像,然后利用系统软件对所得图像信息进行分析。

系统特点:

blob.png

结合了XRF、数字X-射线密度成像、数字光学成像技术

X射线荧光分析,提供Al以上的多种元素的浓度数据(Al – U)

数字X射线密度成像用于样品的高级分析

可扫描分析土芯等样品

实现多种元素同时检测

XRF灵敏度达PPM级

检测效率高,10分钟即可完成1米样品的扫描分析

稳定,可靠,重现性好

灵敏度和精确度高

非接触式分析,不破坏样品

可超负荷工作,每年可工作几千小时

系统组成:

X-射线发生器,X-射线管,X-射线安全防护系统,X-光束准直仪,机动样品台及样芯固定装置,U-型样品槽,X-射线成像检测系统,XRF元素分析仪,光学摄像头,2台工作站,软件及驱动,X-光箔,UPS(不间断电源),激光彩色打印机,设备冷却装置。

技术指标:

1、 测量原理:X-射线荧光分析、数字X-射线成像技术、高分辨率光学成像技术。2、 分辨率:X-射线:扁平光管光束0.2x20mm,其中0.2对应沉积物的长度方向。

X-射线荧光光束:常规分辨率0.2mm,最高分辨率0.1mm(需定制)

X-射线成像分析,最高分辨率20μm

3、X-射线发生器功率:60 kV,55 mA,最大功率3.3 kW

4、X-射线管:铬管或钼管,最大功率2.2 kW(铬管)和3.0 kW(钼管),质保寿命为2000h,期望寿命为3000~5000h。

5、X-射线检测器:用于X-射线数字密度成像,含有1000个感应元件,每个感应元件拍摄20μm宽的样品图像,动态范围达数十倍,样品最大成像厚度60mm。

6、SDD硅漂移检测器:电子冷却,用于XRF检测,可以记录Al – U的任何元素的标识辐射,5.9 keV时,能量分辨率大约140 eV。单次扫描即可完成所有元素的检测。

7、增强型光学成像单元:3x16bit数字RGB彩色CCD光学摄像头和光学图像信息采集软件,采用正交偏振滤光片技术和眩光降低技术,可以获得非常高的图像质量。摄像头光学分辨率为50μm,以两种模式扫描,快速模式(分辨率200μm)和高分辨率模式(分辨率50μm),扫描图像宽约100mm。

8、X-射线防护装置:测量过程中,打开仪器时,X-射线自动关闭。

9、样品台:自动样品台长1800mm,最小步进20μm,温度稳定时重现性好。

10、样品槽:样品槽带手动调节装置,可在据样品横截面中心线的五个不同的固定位置调整。五个位置是:中心,距中心10mm (左和右),距中心20mm (左和右)。

11、样品大小和形状:

1)有效测量长度最长1750mm , 宽度120mm

2)劈开的、水平放置的沉积物样品,最大外径可达120mm

3)厚板状沉积物样品,厚度1-60mm, 宽度120mm

4)U形样品槽

5)木材生长锥样品、平板样品或圆盘样品,厚度1-60mm, 宽度120mm

6)洞穴堆积物(如钟乳石)样品,厚度1-50mm, 宽度120mm

12、工作站:负责扫描控制及数据处理软件。包括Core Scanner Navigator(扫描控制软件)、Qspec(XRF光谱分析和元素浓度计算软件)、ReDiCore(数据显示软件)及所有其他硬件驱动程序。

13、冷却装置:冷却水泵

14、电源:230v/50Hz/三相,建议配UPS(选配)

15、规格:4500×820×1570mm

1

6、重量:800kg

image.png

应用案例一:

英国海洋中心和南安普顿大学地球化学领域科研人员,将土壤元素分析系统应用于东部地中海沉积泥的研究分析。

image.png

应用案例二

法国格勒诺布尔阿尔卑斯大学的Kévin Jacq等利用SPECIM高光谱成像技术与CoreScanner样芯元素扫描分析技术对法国布尔吉湖底沉积物样芯进行了分析研究,结果发表于2019年《Science of the Total Environment》(High-resolution prediction of organic matter concentration with hyperspectral imaging on a sediment core)。

有机物(OM)含量常用于海洋湖泊沉积分析,以重建不同年代的碳通量等,550 °C 烧失量法(Loss on ignition,LOI)被广泛用于古气候相关研究,但LOI具有费时、费力、对样本有损坏、空间分辨率低(0.5-1cm)等缺点。为建立可靠、准确的模型,以进行高通量、快速、无损、高空间分辨率沉积物样芯成分分析,作者综合运用SPECIM高光谱成像技术、XRF CORESCANNER元素扫描分析技术,并以传统LOI550烧失量法作为参照,对54 cm长沉积样芯进行了分析研究。SWIR短波红外高光谱(1000-2500nm)可以在15分钟内完成样品扫描分析,空间分辨率200 μm。XRF CoreScanner分辨率为 200 μm,采用康普顿(非相干,incoherent)和瑞利(相干,coherent)散射数据的比值(inc/coh)作为有机物的表征量。

结果表明,LOI550 参考值与XRF inc/coh 比值及高光谱值均具备显著的相关性,高光谱成像技术可以高通量、非损伤、高空间分辨率分析沉积样芯有机物含量分布。该方法还可转用于自然界的其它样芯分析,如钟乳石、土壤、冰芯、树芯,并可用于推断古环境,古气候,土壤健康和污染等。

image.png

产地

瑞典

选配技术方案

·SisuCHEMA高光谱成像分析系统

·SisuSCS单样芯高光谱成像扫描分析系统

·SisuROCK多样芯高通量高光谱成像扫描分析系统

·SpectraScan高光谱成像扫描分析系统

部分参考文献列表

1)Croudace, I. W., Teasdale, P. A. & Cundy, A. B. 200-year industrial archaeological record preserved in an Isle of Man saltmarsh sediment sequence: Geochemical and radiochronological evidence. Quaternary International 514, 195–203 (2019).

2)Ladlow, C., Woodruff, J. D., Cook, T. L., Baranes, H. & Kanamaru, K. A fluvially derived flood deposit dating to the Kamikaze typhoons near Nagasaki, Japan. Nat Hazards 99, 827–841 (2019).

3)Gregory, B. R. B., Patterson, R. T., Reinhardt, E. G., Galloway, J. M. & Roe, H. M. An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chemical Geology 521, 12–27 (2019).

4)López Pérez, A. E., Rey, D., Martins, V., Plaza-Morlote, M. & Rubio, B. Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: A case study in the Galician Continental Margin. Quaternary International 514, 152–160 (2019).

5)Gopi, K. et al. Combined use of stable isotope analysis and elemental profiling to determine provenance of black tiger prawns (Penaeus monodon). Food Control 95, 242–248 (2019).

6)Croudace, I. W., Löwemark, L., Tjallingii, R. & Zolitschka, B. Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International 514, 5–15 (2019).

7)Croudace, I. W., Löwemark, L., Tjallingii, R. & Zolitschka, B. High resolution XRF core scanners: A key tool for the environmental and palaeoclimate sciences. Quaternary International 514, 1–4 (2019).

8)Seki, A., Tada, R., Kurokawa, S. & Murayama, M. High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner. Prog Earth Planet Sci 6, 1 (2019).

9)Li, T., Zuo, R. & Chen, G. Investigating fluid-rock interaction at the hand-specimen scale via ITRAX. Journal of Geochemical Exploration 204, 57–65 (2019).

10)Gopi, K. et al. Isotopic and elemental profiling to trace the geographic origins of farmed and wild-caught Asian seabass (Lates calcarifer). Aquaculture 502, 56–62 (2019).

11)Peti, L., Gadd, P. S., Hopkins, J. L. & Augustinus, P. C. Itrax μ‐XRF core scanning for rapid tephrostratigraphic analysis: a case study from the Auckland Volcanic Field maar lakes. J. Quaternary Sci. 35, 54–65 (2020).

12)Jones, G., Adamopoulos, S., Liziniewicz, M. & Lindeberg, J. Nondestructive Wood Density Testing in Downy Birch and Silver Birch Genetics Field Trial, Southern Sweden. 9.

13)Jones, A. F., Turner, J. N., Daly, J. S., Francus, P. & Edwards, R. J. Signal-to-noise ratios, instrument parameters and repeatability of Itrax XRF core scan measurements of floodplain sediments. Quaternary International 514, 44–54 (2019).

14)Peti, L. & Augustinus, P. C. Stratigraphy and sedimentology of the Orakei maar lake sediment sequence (Auckland Volcanic Field, New Zealand). Sci. Dril. 25, 47–56 (2019).

15)Gregory, B. R. B., Patterson, R. T., Reinhardt, E. G. & Galloway, J. M. The iBox-FC: A new containment vessel for Itrax X-ray fluorescence core-scanning of freeze cores. Quaternary International 514, 76–84 (2019).

16)Peti, L., Augustinus, P. C., Gadd, P. S. & Davies, S. J. Towards characterising rhyolitic tephra layers from New Zealand with rapid, non-destructive μ-XRF core scanning. Quaternary International 514, 161–172 (2019).

17)Profe, J. & Ohlendorf, C. X-ray fluorescence scanning of discrete samples – An economical perspective. Quaternary International 514, 68–75 (2019).