Beijing 010-82611269,13671083121
Shandong 0532-82861228,15563963062
Xian 029-81124223
/ En

FluorPen手持式叶绿素荧光仪

FluorPen手持式叶绿素荧光仪

FluorPen手持式叶绿素荧光仪
  • 发布时间: 2018-11-15 11:55
  • 发布人:
  • 点击量: 3956

  FluorPen FP110手持式叶绿素荧光仪用于实验室、温室和野外快速测量植物叶绿素荧光参数,具有便携性强、精确度高、性价比高等特点;双键操作,具图形显示屏,内置锂电和数据存储,广泛应用于研究植物的光合作用、胁迫监测、除草剂检测或突变体筛选,还可用于生态毒理的生物检测,如通过不同植物对土壤或水质污染的叶绿素荧光响应,找出敏感植物作为生物传感器用于生物检测。FP110配备多种叶夹型号,用于不同的样品与研究。

image.png

应用领域

适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变筛选等。

植物光合特性研究

光合突变体筛选与表型研究

生物和非生物胁迫的检测

植物抗胁迫能力或者易感性研究

农业和林业育种、病害检测、长势与产量评估

除草剂检测

教学

功能特点:

 结构紧凑、便携性强,LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仅188g

 功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数

 内置了所有通用叶绿素荧光分析实验程序,包括2套荧光淬灭分析程序、3套光响应曲线程序、OJIP快速荧光动力学曲线等

 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP–test参数

 FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量

 具备无人值守自动监测功能

 内置蓝牙与USB双通讯模块,GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表

 配备多种叶夹型号:固定叶夹式(适于实验室内暗适应或夜间快速测量)、分离叶夹式(适用于野外暗适应测量)、探头式(透明光纤探头,具备叶片固定装置,用于非接触性测量监测或光适应条件下的叶绿素荧光监测)、用户定制式等

 可选配野外自动监测式荧光仪,防水防尘设计

image.png

测量程序与功能

Ft:瞬时叶绿素荧光,暗适应完成后Ft=F0

QY:量子产额,表示光系统II 的效率,等于Fv/Fm(暗适应状态)或ΦPSII (光适应状态)。

OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变化

NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程。

LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应。

PAR:光合有效辐射,测量环境中植物生长可以利用的400-700nm实际光强(限PAR型号)。

技术参数

测量参数包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR(限PAR型号)、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等

OJIP–test时间分辨率为10µs(每秒10万次),给出OJIP曲线和26个参数,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等

测量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、PAR(限PAR型号)、Multi无人值守自动监测

叶夹类型:FP110/S固定叶夹式、FP110/D分离叶夹式、FP110/P探头式、FP110/X用户定制式 image.png 

PAR传感器(限PAR型号):80º入射角余弦校正,读数单位µmol(photons)/m².s,可显示读数,检测范围400-700 nm

测量光:每测量脉冲最高0.09µmol(photons)/m².s,10-100%可调

光化学光:10-1000µmol(photons)/m².s可调

饱和光:最高3000µmol(photons)/m².s,10-100%可调

光源:标准配置蓝光470nm,可根据需求配备不同波长的LED光源

检测器:PIN光电二极管,667–750nm滤波器

尺寸大小:超便携,手机大小,134×65×33mm,重量仅188g

存贮:容量16Mb,可存储149000数据点

显示与操作:图形化显示,双键操作,待机8分钟自动关闭

供电:可充电锂电池,USB充电,连续工作48小时,低电报警

工作条件:0–55℃,0–95%相对湿度(无凝结水)

存贮条件:-10–60℃,0–95%相对湿度(无凝结水)

通讯方式:蓝牙+USB双通讯模式

GPS模块:内置

软件:FluorPen1.1专用软件,用于数据下载、分析和图表显示,输出Excel数据文件及荧光动力学曲线图,适用于Windows 7及更高操作系统

操作软件与实验结果 image.png

产地:捷克

应用案例:

  image.png

2017年4月,美国国家航空航天局(NASA)新一代先进植物培养器(Advanced Plant Habitat,APH)搭载联盟号MS-04货运飞船抵达国际空间站。宇航员使用FluorPen手持仪叶绿素荧光仪在其中开展植物生理学及太空食物种植(growth of fresh food in space)的研究。

参考文献

1.F Dang, et al. 2019. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique. Environmental Science & Technology 53(7): 3802-3810

2.N Moghimi, et al. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany 70(12): 3357–3371

3.M Rafique, et al. 2019. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils. Journal of Environmental Management 247: 672-680

4.P Soudek, et al. 2019. Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environmental and Experimental Botany 164: 84-100

5.JA Pérez-Romero, et al. 2019. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. Plant Physiology and Biochemistry 135: 149-159

6.D Shao, et al. 2019. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany, DOI: 10.1093/aob/mcz067

7.C Cirillo, et al. 2019. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 Salinization. Front. Plant Sci. 10:742

8.T Savchenko, et al. 2019. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. Journal of Experimental Botany 70(10): 2919–2932

9.M Liu, et al. 2019. Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms. Science of The Total Environment 670: 613-622

10.PK Tiwari, et al. 2019. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicology and Environmental Safety 176: 321-329

11.JA Pérez-Romero, et al. 2018. Atmospheric CO2 enrichment effect on the Cu-tolerance of the C4 cordgrass Spartina densiflora. Journal of Plant Physiology 220: 155-166

12.SK Yadav, et al. 2018. Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize. Proceedings of the National Academy of Sciences 88(1): 249-263

13.D Balfagón, et al. 2018. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. Plant Physiology and Biochemistry 127: 194-199

14.JI Vílchez, et al. 2018. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach. Front. Microbiol. 9: 284

15.MC Sorrentino, et al. 2018. Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials 351: 131-137

16.E Niewiadomska, et al. 2018. Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light. Journal of Plant Physiology 223: 57-64

17.S Singh, et al. 2018. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Journal of Photochemistry and Photobiology B: Biology 178: 76-84

18.EL Fry, et al. 2018. Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186(4): 1113–-125

附:OJIP参数及计算公式

Bckg = background 

Fo: = F50µs; fluorescence intensity at 50 µs 

Fj: = fluorescence intensity at j-step (at 2 ms) 

Fi: = fluorescence intensity at i-step (at 60 ms) 

Fm: = maximal fluorescence intensity 

Fv: = Fm - Fo (maximal variable fluorescence) 

Vj = (Fj - Fo) / (Fm - Fo) 

Fm / Fo = Fm / Fo 

Fv / Fo = Fv / Fo 

Fv / Fm = Fv / Fm 

Mo = TRo / RC - ETo / RC 

Area = area between fluorescence curve and Fm 

Sm = area / Fm - Fo (multiple turn-over) 

Ss = the smallest Sm turn-over (single turn-over) 

N = Sm . Mo . (I / Vj) turn-over number QA 

Phi_Po = (I - Fo) / Fm (or Fv / Fm) 

Phi_o = I - Vj 

Phi_Eo = (I - Fo / Fm) . Phi_o 

Phi_Do = 1 - Phi_Po - (Fo / Fm) 

Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms) 

ABS / RC = Mo . (I / Vj) . (I / Phi_Po) 

TRo / RC = Mo . (I / Vj) 

ETo / RC = Mo . (I / Vj) . Phi_o) 

DIo / RC = (ABS / RC) - (TRo / RC)