北京总公司 010-82611269,13671082781
青岛分公司 0532-82861228
西安分公司 029-81124223
/ En

FL3500双调制叶绿素荧光仪部分参考文献 (新升级型号为FL6000)

FL3500双调制叶绿素荧光仪部分参考文献 (新升级型号为FL6000)



1.        Manaa A., et al. (2019) Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany, Volume 162, Pages 103-114

2.        Sicora C. I., et al. (2019) Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynthesis Research, Volume 139, Issue 1–3, pp 461–473

3.        Smythers A. L., et al. (2019) Characterizing the effect of Poast on Chlorella vulgaris, a non-target organism. Chemosphere, Volume 219, Pages 704-712

4.        Albanese P., et al. (2018) Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a nonmodel organism aided by transcriptomic data integration. The Plant Journal, Volume96, Issue4, Pages 786-800

5.        Antal T., Konyukhov I., Volgusheva A., et al. (2018) Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol Plantarum. DOI: 10.1111/ppl.12693

6.        Antal T. K., Maslakov A., Yakovleva O. V., et al. (2018). Simulation of chlorophyll fluorescence rise and decay kinetics, and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method. Photosynthesis Research. DOI:10.1007/s11120-018-0564-2

7.        Biswas S., Eaton-Rye J. J. (2018). PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica, 56(1), 200–209.

8.        Bonisteel E. M., et al. (2018). Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS ONE 13(12): e0209115.

9.        Fang X., et al. (2018). Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environmental Microbiology, doi: 10.1101/394122.

10.    Hanelt D. (2018). Photosynthesis assessed by chlorophyll fluorescence. Bioassays, Elsevier, Pages 169-198. 

11.    Kuthanová Trsková E., Belgio E., Yeates A. M., et al. (2018) Antenna proton sensitivity determines photosynthetic light harvesting strategy, Journal of Experimental Botany, Volume 69, Issue 18, 14 August 2018, Pages 4483–4493

12.    Liefer J. D., Garg A. Campbell D. A., et al. (2018) Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLoS ONE. DOI: 10.1371/journal.pone.0195705  

13.    Malerba M. E., Palacios M. M., Palacios Delgado Y. M., et al. (2018) Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist. DOI: 10.1111/nph.15163

14.    Patel V. K., et al. (2018) Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. Arabian Journal for Science and Engineering, Volume 43, Issue 1, pp 109–121

15.    Pavlou A., Jacques J., Ahmadova N., Mamedov F., & Styring S. (2018). The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Scientific Reports, 8(1). DOI:10.1038/s41598-018-21101-w 

16.    Perkins R., Williamson C., Lavaud J., et al. (2018) Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms. Photosynth Res. DOI: 10.1007/s11120-018-0508-x

17.    Poulin C., D. Antoine, and Y. Huot. (2018). Diurnal variations of the optical properties of phytoplankton in a laboratory experiment and their implication for using inherent optical properties to measure biomass," Opt. Express 26, 711-729. 

18.    Semin B. K., Davletshina L. N., & Mamedov M. D. (2017). Effect of different methods of Ca2+ extraction from PSII oxygen-evolving complex on the QA− oxidation kinetics. Photosynthesis Research, 136(1), 83–91.  

19.    Spijkerman E., Behrend H., Fach B., & Gaedke U. (2018). Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila. Science of The Total Environment, 626, 1342–1349. 

20.    Solhaug K. A., Chowdhury D. P., & Gauslaa Y. (2018). Short- and long-term freezing effects in a coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria). Cryobiology, 82, 124–129. 

21.    Takagi D., Ifuku K., Nishimura T. and Miyake C. (2018) Antimycin A inhibits cytohrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res. DOI: 10.1007/s11120-018-0519-7 

22.    Ungerer J., Lin P-C., Chen H-Y., Pakrasi H. B. (2018) Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. mBio 9:e02327-17. 

23.    Xu K., Lavaud J., Perkins R., Austen E., Bonnanfant M., & Campbell D. A. (2018). Phytoplankton σPSII and Excitation Dissipation; Implications for Estimates of Primary Productivity. Frontiers in Marine Science, 5. DOI:10.3389/fmars.2018.00281 

24.    Yu Z., et al. (2018) Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Environmental Science: Processes & Impacts, DOI:10.1039/C8EM00106E

25.    Yu Z., et al. (2018) Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, Volume 156, Pages 75-86

26.    Yussi M. Palacios, Avigad Vonshak, and John Beardall (2018) Photosynthetic and growth responses of Nannochloropsis oculata (Eustigmatophyceae) during batch cultures in relation to light intensity. Phycologia: 2018, Vol. 57, No. 5, pp. 492-502. 

27.    Ahmadova N., Ho F., Styring S. and Mamedov F. (2017) Tyrozine D oxidation and redox equilibrium in Photosystem II. BBA – Bioenergetics.  DOI:10.1016/j.bbabio.2017.02.011 

28.    Albanese P., et al. (2017) Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 7: 10067, DOI:10.1038/s41598-017-10700-8

29.    Belgio E., Trsková E., Kotabová E., et al. (2017) High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res. DOI: 10.1007/s11120-017-0385-8

30.    Bernát G., Steinbach G., Kaňa R. et al. (2017). On the origin of the slow M–T chlorophyll A fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res. DOI: 10.1007/s11120-017-0458-8 

31.    Chiş C., Carmel D., Chiş I. et al. (2017) Expression of psbA1 gene in Synechocystis sp. PCC 6803 is influenced by CO2. Open Life Sci. DOI: 10.1515/biol-2017-0018 

32.    Felcmanová K., Lukeš M., Kotabová E., et al. (2017) Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogenlimited growth. Photosynth Res. Volume 134. DOI: 10.1007/s11120-017-0418-3 

33.    Huokko T., et al. (2017) Role of type 2 NAD (P) H dehydrogenase NdbC in redox regulation of carbon allocation in Synechocystis. Plant Physiology, Vol. 174, pp. 1863–1880

34.    Kamalanathan M, Thi Dao L. H., Chaisutyakorna P., et al. (2017) Photosynthetic physiology of Scenedesmus sp. (Chlorophyceae) under photoautotrophic and molasses-based heterotrophic and mixotrophic conditions. Phycologia. 56. No. 6. DOI: 10.2216/17-45.1  

35.    Li G. and Campbell D. A. (2017) Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Photosynth Res. Volume 131, DOI:10.1007/s11120-016-0301-7 

36.    Li G., Talmy D. and Campbell D. A. (2017) Diatom growth  responses  to  photoperiod  and  light  are predictable from diel reductant generation. J. Phycol. Volume 53. DOI: 10.1111/jpy.12483 

37.    Markou G., Dao L. H. T., Muylaert K. and Beardall J.(2017) Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research. Pages 84 – 92. DOI: 10.1016/j.algal.2017.07.005 

38.    Miyachi M., Ikehira S., Nishior D., et al. (2017) Photocurrent generation of reconstituted photosystem II on self-assembled gold film. Langmuir., Volume 33 (6). DOI: 10.1021/acs.langmuir.6b03499 

39.    Murphy C. D., et al. (2017) Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS ONE, 12(1): e0168991

40.    Nath A., et al. (2017) Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiology and Molecular Biology of Plants, Volume 23, Issue 2, pp 269–280

41.    Ni G., et al. (2017) Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. Photosynthesis Research, Volume 131, Issue 2, pp 203–220

42.    Piwosz K., Kaftan D., Dean J., et al. (2017) Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environmental microbiology. DOI: 10.1111/1462-2920.14003 

43.    Xu K., Grant-Burt J. L., Donaher N. and Campbell D. A. (2017) Connectivity among Photosystem II centers in Phytoplankters: Patterns and Responses. BBA – Bioenergetics. DOI:10.1016/j.bbabio.2017.03.003

44.    Zhang X., Ma F., Zhu X., et al. (2017) The acceptor side of photosystem II is the initial target of nitrite stress in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol

45.    Dao L. H. T. and Beardall J. (2016)  Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogenity.  Algal Research. Volume 16. DOI: 10.1016/j.algal.2016.03.006. 

46.    Ferroni L., Suorsa M., Aro, E. M., et al. (2016) Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. New Phytol. Volume 211. DOI: 10.1111/nph.13939 

47.    Garcia-Chaves M. C., Cottrell M. T., Kirchman D. L. et al. (2016) Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass  production. The ISME Journal. Volume 10. DOI:10.1038/ismej.2015.242 

48.    Grama B. S., Agathos S. N. and Jeffryes C. S. (2016) Balancing Photosynthesis and Respiration Increases Microalgal Biomass Productivity during Photoheterotrophy on Glycerol.  ACS Sustainable Chem. Eng. Volume 4. Pages 1611–1618.

49.    Kobayashi K., Endo K. and Wada H. (2016) Multiple Impacts of Loss of Plastidic Phosphatidylglycerol Biosynthesis on Photosynthesisduring Seedling Growth of Arabidopsis.  Frontiers of Plant Sciences. Volume 7. DOI: 10.3389/fpls.2016.00336 

50.    Li G., Woroch A. D., Donaher N. A., Cockshutt A. M., et al. (2016) A Hard Day's Night: Diatoms Continue Recycling Photosystem II in the Dark . Frontiers in Marine Science. Volume 3. DOI: 10.3389/fmars.2016.00218     

51.    Murphy C. D., Ni G., Li G., et al. (2016) Quantitating active photosystem II reaction center content from fluorescence induction transients. Limnol. Oceanogr. Methods. DOI:10.1002/lom3.10142  

52.    Patel V. K., Mají D., Pandey S. S., et al. 2016) Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass, Algal Research. Volume 16. DOI: 10.1016/j.algal.2016.02.029. 

53.    Rehman A. U., Szabó M., Deák Z., et al. (2016) Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. Volume 212. DOI:10.1111/nph.14056 

54.    Treves H., Raanan H., Kedem I., et al. (2016) The mechanisms whereby the green alga Chlorella ohadii isolated from desert soil crust, exhibits unparalleled photodamage resistence. New Phytologist. 210. DOI : 10.1111/nph.13870

55.    Volgusheva A., Kruse O., Styring S., et al. (2016) Changes in the Photosystem II complex associated with hydrogen formation in sulfur deprived Chlamydomonas reinhardtii. Algal Research. Volume 18. DOI: 10.1016/j.algal.2016.06.025.

56.    Wang J., Liu Q., Feng J., et al. (2016) Photosynthesis Inhibition of Pyrogallol Against the Bloom-Forming Cyanobacterium Microcystis aeruginosa TY001. Pol. J. Environ. Stud. Volume 25. DOI: 10.15244/pjoes/63412

57.    Cheregi O., Kotabová E., Prášil O., et al. (2015) Presence of state transitions in the cryptophyte alga Guillardia theta. Journal of Experimental Botany. Volume 66. Pages 6461–6470.

58.    Li, G., Brown, C. M., Jeans, J. A., et al. (2015) The nitrogen costs of photosynthesis in  a diatom under current and future pCO2. New Phytologist. Volume 205. Pages 533–543.  

59.    Negi S., Barry A. N., Friedland N., et al. (2015). Impact of Nitrogen Limitation on Biomass, Photosynthesis, and Lipid Accumulation in Chlorella Sorokiniana. Journal of Applied Phycology. DOI 10.1007/s10811-015-0652-z 

60.    You L., He L. and Tang Y. J. (2015). Photoheterotrophic fluxome in Synechocystissp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. Journal of bacteriol Bacteriology. Volume 197. Pages 943–950. DOI:10.1128/JB.02149-14 

61.    Zorz J. K., Allanach J. R., Murphy C. D., et al. (2015). The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria. Life. Volume 5. Pages 403–417.  DOI: 10.3390/life5010403 

62.    Chiş C., Chiş I., Sicora O., et al. (2014). Forwar elektron transport measured in situ in microbibial mats from a hot spring in N-W Romania. Studia Universitatis Babes-Bolyai, Biologia. Volume 59. Pages 17-26. 

63.    Káňa R., Kotabova E., Lukeš M., et al. (2014). Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae. Plant Physiology. Volume 165. Pages 1618–1631. DOI: 10.1104/pp.114.236075

64.    Kotabová, E., Jarešová, J., Kaňa, R., et al. (2014). Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochimica et Biophysica Acta – Bioenergetics. Volume 1837. Pages 734-743.

65.    Petrou, K., Trimborn, S., Rost, B., et al. (2014). The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex. Marine Biology. Volume 161. Pages 925-937 .

66.    Solhaug K. A., Xie L. and Gauslaa Y. (2014). Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant Cell Physiol. Volume 55. Pages 1404-14.

67.    K Petrou, S Trimborn,B Rost, PJ Ralph,CS Hassler. The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex. Marine Biology.April 2014,Volume 161,Issue 4,pp 925-937.

68.    A Jajoo, NR Mekala, RS Tomar, M Grieco. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

Journal of Photochemistry and Photobiology B: Biolagy. August 2014,Volume 137, Pages 151–155

69.    E Kotabová, J Jarešová, R Kaňa, R Sobotka. Novel type of red-shifted chlorophyll a antenna complex from Chromeravelia. I. Physiological relevance and functional connection to Photosystems. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1837, Issue 6, June 2014, Pages 734–743

70.    A Belatik, S Hotchandani, R Carpentier. Inhibition of the Water Oxidizing Complex of Photosystem II and the Reoxidation of the Quinone Acceptor QA by Pb2+. PlOS one.2013 Jul 4; 8(7):e68142.

71.    I Hasni, S Hamdani, R Carpentier. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+. Photochemistry and Photobiology.2013 Sep-Oct; 89(5):1135-1142.