Beijing 010-82611269,18189218391
Shandong 0532-82861228,15563963062
Xian 029-81124223
/ En

FL3500双调制叶绿素荧光仪部分参考文献_(新升级型号为FL6000)

FL3500双调制叶绿素荧光仪部分参考文献_(新升级型号为FL6000)


1.         Manaa A, et al. 2019. Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany 162: 103-114

2.         Yu Z, et al. 2019. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. Environmental Science: Processes & Impacts 21: 1011-1020

3.         Liang Y, et al. 2019. Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. The ISME journal, DOI: 10.1038/s41396-019-0441-9

4.         Orfanidis S, et al. 2019. Solving Nuisance Cyanobacteria Eutrophication Through Biotechnology. Applied Sciences 9(12): 2566

5.         Sicora C I, et al. 2019. Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynthesis Research 139(1–3): 461–473

6.         Smythers A L, et al. 2019. Characterizing the effect of Poast on Chlorella vulgaris, a non-target organism. Chemosphere 219: 704-712

7.         Albanese P, et al. 2018. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a nonmodel organism aided by transcriptomic data integration. The Plant Journal 96(4): 786-800

8.         Antal T, Konyukhov I, Volgusheva A, et al. 2018. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol Plantarum. DOI: 10.1111/ppl.12693

9.         Antal T K, Maslakov A, Yakovleva O V, et al. 2018.Simulation of chlorophyll fluorescence rise and decay kinetics, and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method. Photosynthesis Research. DOI:10.1007/s11120-018-0564-2

10.     Biswas S, Eaton-Rye J J, et al. 2018. PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica, 56(1), 200–209.

11.     Bonisteel E M, et al. 2018. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS ONE 13(12): e0209115.

12.     Fang X, et al. 2018. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environmental Microbiology, doi: 10.1101/394122.

13.     Kuthanová Trsková E, Belgio E, Yeates A M, et al. 2018. Antenna proton sensitivity determines photosynthetic light harvesting strategy, Journal of Experimental Botany 69(18): 4483-4493

14.     Hanelt D. 2018. Photosynthesis assessed by chlorophyll fluorescence. Bioassays, 169-198. 

15.     Liefer J. D., Garg A. Campbell D. A., et al. 2018 Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLoS ONE. DOI: 10.1371/journal.pone.0195705  

16.     Malerba M. E., Palacios M. M., Palacios Delgado Y. M., et al. 2018 Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist. DOI: 10.1111/nph.15163

17.     Patel V. K., et al. 2018 Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. Arabian Journal for Science and Engineering 43(1): 109–121

18.     Pavlou A., Jacques J., Ahmadova N., Mamedov F., & Styring S. 2018. The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Scientific Reports, 8(1). DOI:10.1038/s41598-018-21101-w 

19.     Perkins R., Williamson C., Lavaud J., et al. 2018 Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Haslea diatoms. Photosynth Res. DOI: 10.1007/s11120-018-0508-x

20.     Poulin C., D. Antoine, and Y. Huot. 2018. Diurnal variations of the optical properties of phytoplankton in a laboratory experiment and their implication for using inherent optical properties to measure biomass," Opt. Express 26, 711-729. 

21.     Semin B. K., Davletshina L. N., & Mamedov M. D. 2017. Effect of different methods of Ca2+ extraction from PSII oxygen-evolving complex on the QA− oxidation kinetics. Photosynthesis Research 136(1), 83–91.  

22.     Spijkerman E., Behrend H., Fach B., & Gaedke U. 2018. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila. Science of The Total Environment 626, 1342–1349. 

23.     Solhaug K. A., Chowdhury D. P., & Gauslaa Y. 2018. Short- and long-term freezing effects in a coastal (Lobaria virens) versus a widespread lichen (L. pulmonaria). Cryobiology 82, 124–129. 

24.     Takagi D., Ifuku K., Nishimura T. and Miyake C. 2018 Antimycin A inhibits cytohrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res. DOI: 10.1007/s11120-018-0519-7 

25.     Ungerer J., Lin P-C., Chen H-Y., Pakrasi H. B. 2018 Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. mBio 9:e02327-17. 

26.     Xu K., Lavaud J., Perkins R., Austen E., Bonnanfant M., & Campbell D. A. 2018. Phytoplankton σPSII and Excitation Dissipation; Implications for Estimates of Primary Productivity. Frontiers in Marine Science, 5. DOI:10.3389/fmars.2018.00281 

27.     Yu Z., et al. 2018 Physiological changes in Chlamydomonas reinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Environmental Science: Processes & Impacts, DOI:10.1039/C8EM00106E

28.     Yu Z., et al. 2018 Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety 156, 75-86

29.     Yussi M. Palacios, Avigad Vonshak, and John Beardall 2018 Photosynthetic and growth responses of Nannochloropsis oculata (Eustigmatophyceae) during batch cultures in relation to light intensity. Phycologia 57(5), 492-502. 

30.     Ahmadova N., Ho F., Styring S. and Mamedov F. 2017 Tyrozine D oxidation and redox equilibrium in Photosystem II. BBA – Bioenergetics.  DOI:10.1016/j.bbabio.2017.02.011 

31.     Albanese P., et al. 2017 Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 7: 10067, DOI:10.1038/s41598-017-10700-8

32.     Belgio E., Trsková E., Kotabová E., et al. 2017 High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res. DOI: 10.1007/s11120-017-0385-8

33.     Bernát G., Steinbach G., Kaňa R. et al. 2017. On the origin of the slow M–T chlorophyll A fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res. DOI: 10.1007/s11120-017-0458-8 

34.     Chiş C., Carmel D., Chiş I. et al. 2017 Expression of psbA1 gene in Synechocystis sp. PCC 6803 is influenced by CO2. Open Life Sci. DOI: 10.1515/biol-2017-0018 

35.     Felcmanová K., Lukeš M., Kotabová E., et al. 2017 Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogenlimited growth. Photosynth Res. Volume 134. DOI: 10.1007/s11120-017-0418-3 

36.     Huokko T., et al. 2017 Role of type 2 NAD (P) H dehydrogenase NdbC in redox regulation of carbon allocation in Synechocystis. Plant Physiology 174. 1863–1880

37.     Kamalanathan M, Thi Dao L. H., Chaisutyakorna P., et al. 2017 Photosynthetic physiology of Scenedesmus sp. (Chlorophyceae) under photoautotrophic and molasses-based heterotrophic and mixotrophic conditions. Phycologia. 56(6),  DOI: 10.2216/17-45.1  

38.     Li G. and Campbell D. A. 2017 Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Photosynth Res. 131, DOI: 10.1007/s11120-016-0301-7 

39.     Li G., Talmy D. and Campbell D. A. 2017 Diatom growth  responses  to  photoperiod  and  light  are predictable from diel reductant generation. J. Phycol. 53. DOI: 10.1111/jpy.12483 

40.     Markou G., Dao L. H. T., Muylaert K. and Beardall J.2017 Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research. 84 – 92. DOI: 10.1016/j.algal.2017.07.005 

41.     Miyachi M., Ikehira S., Nishior D., et al. 2017 Photocurrent generation of reconstituted photosystem II on self-assembled gold film. Langmuir., 33 (6). DOI: 10.1021/acs.langmuir.6b03499 

42.     Murphy C. D., et al. 2017 Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS ONE, 12(1): e0168991

43.     Nath A., et al. 2017 Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiology and Molecular Biology of Plants, 23(2), 269–280

44.     Ni G., et al. 2017 Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. Photosynthesis Research 131(2): 203–220

45.     Piwosz K., Kaftan D., Dean J., et al. 2017 Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environmental microbiology. DOI: 10.1111/1462-2920.14003 

46.     Xu K., Grant-Burt J. L., Donaher N. and Campbell D. A. 2017 Connectivity among Photosystem II centers in Phytoplankters: Patterns and Responses. BBA – Bioenergetics. DOI:10.1016/j.bbabio.2017.03.003

47.     Zhang X., Ma F., Zhu X., et al. 2017 The acceptor side of photosystem II is the initial target of nitrite stress in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol

48.     Dao L. H. T. and Beardall J. 2016  Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogenity.  Algal Research 16. DOI: 10.1016/j.algal.2016.03.006. 

49.     Ferroni L., Suorsa M., Aro, E. M., et al. 2016 Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. New Phytol. 211. DOI: 10.1111/nph.13939 

50.     Garcia-Chaves M. C., Cottrell M. T., Kirchman D. L. et al. 2016 Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass  production. The ISME Journal. 10. DOI:10.1038/ismej.2015.242 

51.     Grama B. S., Agathos S. N. and Jeffryes C. S. 2016 Balancing Photosynthesis and Respiration Increases Microalgal Biomass Productivity during Photoheterotrophy on Glycerol.  ACS Sustainable Chem. Eng. 4, 1611–1618.

52.     Kobayashi K., Endo K. and Wada H. 2016 Multiple Impacts of Loss of Plastidic Phosphatidylglycerol Biosynthesis on Photosynthesisduring Seedling Growth of Arabidopsis.  Frontiers of Plant Sciences. 7. DOI: 10.3389/fpls.2016.00336 

53.     Li G., Woroch A. D., Donaher N. A., Cockshutt A. M., et al. 2016 A Hard Day's Night: Diatoms Continue Recycling Photosystem II in the Dark . Frontiers in Marine Science. 3. DOI: 10.3389/fmars.2016.00218     

54.     Murphy C. D., Ni G., Li G., et al. 2016 Quantitating active photosystem II reaction center content from fluorescence induction transients. Limnol. Oceanogr. Methods. DOI:10.1002/lom3.10142  

55.     Patel V. K., Mají D., Pandey S. S., et al. 2016) Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass, Algal Research. Volume 16. DOI: 10.1016/j.algal.2016.02.029. 

56.     Rehman A. U., Szabó M., Deák Z., et al. 2016 Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. 212. DOI:10.1111/nph.14056 

57.     Treves H., Raanan H., Kedem I., et al. 2016 The mechanisms whereby the green alga Chlorella ohadii isolated from desert soil crust, exhibits unparalleled photodamage resistence. New Phytologist. 210. DOI : 10.1111/nph.13870

58.     Volgusheva A., Kruse O., Styring S., et al. 2016 Changes in the Photosystem II complex associated with hydrogen formation in sulfur deprived Chlamydomonas reinhardtii. Algal Research. 18. DOI: 10.1016/j.algal.2016.06.025.

59.     Wang J., Liu Q., Feng J., et al. 2016 Photosynthesis Inhibition of Pyrogallol Against the Bloom-Forming Cyanobacterium Microcystis aeruginosa TY001. Pol. J. Environ. Stud. 25. DOI: 10.15244/pjoes/63412

60.     Cheregi O., Kotabová E., Prášil O., et al. 2015 Presence of state transitions in the cryptophyte alga Guillardia theta. Journal of Experimental Botany. 66, 6461–6470.

61.     Li, G., Brown, C. M., Jeans, J. A., et al. 2015 The nitrogen costs of photosynthesis in  a diatom under current and future pCO2. New Phytologist. 205, 533–543.  

62.     Negi S., Barry A. N., Friedland N., et al. 2015. Impact of Nitrogen Limitation on Biomass, Photosynthesis, and Lipid Accumulation in Chlorella Sorokiniana. Journal of Applied Phycology. DOI 10.1007/s10811-015-0652-z 

63.     You L., He L. and Tang Y. J. 2015. Photoheterotrophic fluxome in Synechocystissp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. Journal of bacteriol Bacteriology. 197, 943–950. DOI:10.1128/JB.02149-14 

64.     Zorz J. K., Allanach J. R., Murphy C. D., et al. 2015. The RUBISCO to Photosystem II Ratio Limits the Maximum Photosynthetic Rate in Picocyanobacteria. Life. Volume 5. Pages 403–417. DOI: 10.3390/life5010403 

65.     Chiş C., Chiş I., Sicora O., et al. 2014. Forwar elektron transport measured in situ in microbibial mats from a hot spring in N-W Romania. Studia Universitatis Babes-Bolyai, Biologia. Volume 59. Pages 17-26. 

66.     Káňa R., Kotabova E., Lukeš M., et al. 2014. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae. Plant Physiology. Volume 165. Pages 1618–1631. DOI: 10.1104/pp.114.236075

67.     Kotabová, E., Jarešová, J., Kaňa, R., et al. 2014. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochimica et Biophysica Acta – Bioenergetics. Volume 1837. Pages 734-743.

68.     Petrou, K., Trimborn, S., Rost, B., et al. 2014. The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex. Marine Biology. Volume 161. Pages 925-937 .

69.     Solhaug K. A., Xie L. and Gauslaa Y. 2014. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant Cell Physiol. Volume 55. Pages 1404-14.

70.     K Petrou, S Trimborn,B Rost, PJ Ralph,CS Hassler. The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex. Marine Biology.April 2014,Volume 161,Issue 4,pp 925-937.

71.     A Jajoo, NR Mekala, RS Tomar, M Grieco. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

Journal of Photochemistry and Photobiology B: Biolagy. August 2014,Volume 137, Pages 151–155

72.     E Kotabová, J Jarešová, R Kaňa, R Sobotka. Novel type of red-shifted chlorophyll a antenna complex from Chromeravelia. I. Physiological relevance and functional connection to Photosystems. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1837, Issue 6, June 2014, Pages 734–743

73.     A Belatik, S Hotchandani, R Carpentier. Inhibition of the Water Oxidizing Complex of Photosystem II and the Reoxidation of the Quinone Acceptor QA by Pb2+. PlOS one.2013 Jul 4; 8(7):e68142.

74.     I Hasni, S Hamdani, R Carpentier. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+Photochemistry and Photobiology.2013 Sep-Oct; 89(5):1135-1142.

75.     A Tovuu, IS Zulfugarov, CH Lee. Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes. Physiologia plantarum.2013 Apr;147(4):409-16.

76.     D Zhang, C Deng,X Pan. Excess Ca2+ does not alleviate but increases the toxicity of Hg2+ to photosystem II in Synechocystis sp.(Cyanophyta). Ecotoxicology and environmental safety.2013 Nov; 97:160-5.

77.     S OPRIS,R Teodor,C SICORA. Effect on the Electron Transport Chain of Changing Carbon Dioxide Concentration in Some Model Cyanobacteria Species. ProEnvironment/ProMediu. 2013 Vol 6, No 14

78.     Jared M. Fraser,Sarah E. Tulk,Jennifer A. Jeans. Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLOS ONE 2013 8(3): 1-11.

79.     É Kiss,PB Kós,M Chen,I Vass. Functioning of the Bidirectional Hydrogenase in Different Unicellular Cyanobacteria. Photosynthesis Research for Food, Fuel and the Future. 2013, pp 733-736.

80.     T Krupnik, E Kotabová, LS van Bezouwen. A Reaction Center-dependent Photoprotection Mechanism in a Highly Robust Photosystem II from an Extremophilic Red Alga, Cyanidioschyzon merolae. Journal of Biological Chemistry.2013 Aug 9; 288(32):23529-42. 

81.     FL Figueroa, CG Jerez, N Korbee. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Latin american journal of aquatic rsearch 2013 41(5): 801-819

82.     R Kaňa, O Komárek, E Kotabová. The Slow S to M fluorescence rise is missing in the RpaC mutant of Synechocystis sp.(PCC 6803) . Photosynthesis Research for Food, Fuel and the Future, 493-496

83.     W. Vredenberg and O. Prasil. On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulse of variable length. Photosynth Research 2013 117:321-337

84.     Krupnik, E Kotabová, LS van Bezouwen. A Reaction Center-dependent Photoprotection Mechanism in a Highly Robust Photosystem II from an Extremophilic Red Alga, Cyanidioschyzon merolae. T- Journal of Biological Chemistry, 2013 Aug 9;288(32):23529-42.

85.     Z Perrine, S Negi, RT Sayre. Optimization of photosynthetic light energy utilization by microalgae. Algal Research. October 2012, Volume1,Issue2, Pages 134–142 

86.     Y Kato, T Shibamoto, S Yamamoto, T Watanabe. Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl/Br exchanges on the redox potential of the primary quinone QA in Photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry. Biochimca et Biophysica Acta, 2012 Nov; 1817(11):1998-2004.

87.     C Deng, X Pan, H Zhang, X Pan. Fire-resistance of six tree species to fire probed by chlorophyll fluorescence. Journal of Food, Agriculture & Environment. 2012, Vol.10 (2): 1329-1333.

88.     S Wang, X Pan. Effects of Sb (V) on growth and chlorophyll fluorescence of Microcystis aeruginosa (FACHB-905). Current microbiology.2012 Dec;65(6):733-41.

89.