Beijing 010-82611269,18189218391
Shandong 0532-82861228
Xian 029-81124223
/ En




1.         Aihara Y, et al. 2019, Algal photoprotection is regulated by the E3 ligase CUL4–DDB1DET1. Nature Plants 5: 34–40

2.         Strenkert D, et al. 2019, Multiomics resolution of molecular events during a day in the life of Chlamydomonas. PNAS 116 (6): 2374-2383

3.         Chen Y, et al. 2019, Mgdechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii. The Plant Journal 97(6):  1022-1031

4.         Homburg SV, et al. 2019. Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels. Journal of Biotechnology 302: 58-66

5.         Marečková M, et al. 2019. Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: a chlorophyll fluorescence study. Polar Biology 42(4): 685–701

6.         Liao X, et al. 2019. The effects of fluorocarbon special surfactant (FS-30) additive on the phase inversion, morphology and separation performance of poly(vinylidene fluoride) (PVDF) membranes. Separation and Purification Technology 212: 619-631

7.         Homburg SV, et al. 2019. Entrapment and growth of Chlamydomonas reinhardtii in biocompatible silica hydrogels. Colloids Surf B Biointerfaces 173: 233-241

8.         Jiang M, et al. 2019. Expression analysis of three phosphate transporter genes in the fast-growing mutants of Gracilariopsis lemaneiformis (Rhodophyta) under low phosphorus condition. Journal of Applied Phycology 31(3): 1907–1919

9.         Mishra KB, et al. 2019. A correlative approach, combining chlorophyll a fluorescence, reflectance, and Raman spectroscopy, for monitoring hydration induced changes in Antarctic lichen Dermatocarpon polyphyllizum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 208: 13-23

10.     Rola K, et al. 2019. Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites. Science of The Total Environment 679: 260-269

11.     Lang J, et al. 2019. THE A water-soluble [60] fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii. Acta Biochimica Polonica. DOI: 10.18388/abp.2019_2835

12.     Váczi P, et al. 2019. Reprint of Efficient fungal UV-screening provides a remarkably high UV-B tolerance of photosystem II in lichen photobionts. Plant Physiology and Biochemistry 134: 123-128

13.     Ataeian M, et al. 2019. Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2. Biotechnology and Bioengineering 116(7):  1604-1611

14.     Tokutsu R, et al. 2019. Isolation of photoprotective signal transduction mutants by systematic bioluminescence screening in Chlamydomonas reinhardtii. Scientific Reports 9: 2820

15.     Nowicka B, 2019. Practical aspects of the measurements of nonphotochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. Physiologia Plantarum. doi: 10.1111/ppl.13003

16.     Kamrani YY, et al. 2018. ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression. Plant and Cell Physiology 59(12): 2602–2607

17.     Vries J, et al. 2018. Embryophyte stress signaling evolved in the algal progenitors of land plants. PNAS 115 (15): 3471-3480

18.     Váczi P, et al. 2018. Efficient fungal UV-screening provides a remarkably high UV-B tolerance of photosystem II in lichen photobionts. Plant Physiology and Biochemistry 132: 89-94

19.     Barták M, et al. 2018. Effect of UVB radiation on the content of UVB absorbing compounds and photosynthetic parameters in Parmotrema austrosinense from two contrasting habitats. Plant Biology 20(5): 808-816

20.     Abeynayaka HDL, et al. 2018. Effects of elevated pressure on Pseudanabaena galeata Böcher in varying light and dark environments. Environmental Science and Pollution Research 25(21): 21224–21232

21.     Ručová D, et al. 2018. Adaptations of cyanobacterium Nostoc commune to environmental stress: Comparison of morphological and physiological markers between European and Antarctic populations after rehydration. Czech Polar Rep 8 (1): 84-93

22.     Perozeni F, et al. 2018. LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. International Journal of Molecular Sciences 19(1): 155

23.     Kleefeld A, et al. 2018. Identification of spatial pattern of photosynthesis hotspots in moss- and lichen-dominated biological soil crusts by combining chlorophyll fluorescence imaging and multispectral BNDVI images. Pedobiologia 68: 1-11

24.     Roach T, et al. 2018. Distress and eustress of reactive electrophiles and relevance to light stress acclimation via stimulation of thiol/disulphide-based redox defences. Free Radical Biology and Medicine 122: 65-73

25.     Serôdio J, et al. 2018. An LED-based multi-actinic illumination system for the high throughput study of photosynthetic light responses. PeerJ 6: e5589

26.     Rauch C, et al. 2018. The ability to incorporate functional plastids by the sea slug Elysia viridis is governed by its food source. Marine Biology 165:82

27.     Kvíderová J, et al. 2018. Internal structure and photosynthetic performance of Nostoc sp. colonies in the high Arctic. Acta Societatis Botanicorum Poloniae 87(4): 3602

28.     Mascalchi M, et al. 2018. Laser removal of biofilm from Carrara marble using 532 nm: The first validation study. Measurement 130: 255-263

29.     Frankenbach S, et al. 2018. Photoinactivation, repair and the motility-physiology trade-off in microphytobenthos. Marine Ecology Progress Series 601: 41-57

30.     Kim YS, et al. 2018. Expression of OsTPX gene improves cellular redox homeostasis and photosynthesis efficiency in Synechococcus elongatus PCC 7942. Front. Plant Sci. 9:1848

31.     Orekhova A, et al. 2018. Post rapid freezing growth of Antarctic strain of Heterococcus sp. monitored by cell viability and chlorophyll fluorescence. Cryobiology 85: 39-46 

32.     Hanelt D, 2018. Photosynthesis assessed by chlorophyll fluorescence. Bioassays: Advanced Methods and Applications, Elsevier, doi:10.1016/B978-0-12-811861-0.00032-2

33.     Perozeni F, et al. 2018. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. International Journal of Molecular Sciences 19(155),  doi:10.3390/ijms19010155

34.     Dall'Osto L, et al. 2017. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants 3(5) :17033

35.     Frankenbach S, et al. 2017. One pulse, one light curve: Fast characterization of the light response of microphytobenthos biofilms using chlorophyll fluorescence. Limnology and Oceanography-Methods 15(6): 554-566

36.     Christa G, et al. 2017. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energydependent quenching (qE). New Phytologist 214(3): 1132-1144

37.     Ahmad R A, et al. 2017. Relaxation of cellular K+ gradients by valinomycin induces diatoxanthin accumulation in Cyclotella meneghiniana cells and alters FCPa fluorescence yield in vitro. Physiologia Plantarum 161(1): 171-180

38.     Roach T, et al. 2017. Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein). Physiologia Plantarum 161(1): 75-87

39.     Serôdio J, et al. 2017. A chlorophyll fluorescence-based method for the integrated characterization of the photophysiological response to light stress. Journal of Experimental Botany 68(5): 1123-1135

40.     Cline S G, et al. 2017. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. Front. Plant Sci. 8:1306

41.     Barriuso B C, et al. 2017. Conservation of calcareous stone monuments: Screening different diammonium phosphate based formulations for countering phototrophic colonization. Journal of Cultural Heritage 27: 97-106

42.     Perin G, et al. 2017. Cultivation in industrially relevant conditions has a strong influence on biological properties and performances of Nannochloropsis gaditana genetically modified strains. Algal Research 28, 88-99

43.     Oliveira V, et al. 2017. Effects of the Inoculant Strain Pseudomonas sp. SPN31 nah + and of 2-Methylnaphthalene Contamination on the Rhizosphere and Endosphere Bacterial Communities of Halimione portulacoides. Current Microbiology 74(5), 575-583

44.     Żurek R, et al. 2017. Toxicity evaluation of spent drilling mud and drilling waste. AGH Drilling, Oil, Gas 34(1), 243-258

45.     Higo S, et al. 2017. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61: 63-70

46.     Khanal N, et al. 2017. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum. Plants 6(3): 32

47.     Trnková K, et al. 2017. Desiccation-induced changes in photochemical processes of photosynthesis and spectral reflectance in Nostoc commune (Cyanobacteria, Nostocales) colonies from polar regions. Phycological Research 65(1), 44-50

48.     Allorent G, et al. 2016. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. PNAS 113 (51), 14864-14869

49.     Shapiguzov A, et al. 2016. Activation of the Stt7/STN7 Kinase through Dynamic Interactions with the Cytochrome b6f Complex. Plant Physiology 171, 82-92

50.     Tibiletti T, et al. 2016. Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiology,

51.     Králiková I, et al. 2016. Response of lichens Cladonia arbuscula subsp. mitis and Cladonia furcata to nitrogen excess. Biologia 71(6), 632-638

52.     Pushkareva E, et al. 2016. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts. Polar Biology 39(12), 2227-2240

53.     Elster J, et al. 2016. Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica. Biogeosciences 13, 535-549

54.     Checchetto V, et al. 2016. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. Plant Cell Physiol. 57(4), 862-877

55.     Berteotti S, et al. 2016. Increased biomass productivity in green algae by tuning non-photochemical quenching. Scientific Reports 6, 21339

56.     Lauersen K J, et al. 2016. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering, /j.ymben.2016.07.013

57.     Wannathong T, et al. 2016. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology 100(12), 5467-5477

58.     Laviale M, et al. 2016. The importance of being fast: comparative kinetics of vertical migration and non-photochemical quenching of benthic diatoms under light stress. Marine Biology  163, 10

59.     Perin G, et al. 2016. Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research 19, 69-76

60.     Pichrtová M, et al. 2016. Annual development of mat-forming conjugating green algae Zygnema spp. in hydro-terrestrial habitats in the Arctic. Polar Biology 39(9), 1653-1662

61.     Pichrtová M, et al. 2016. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology doi: 10.1093/femsec/iw096

62.     Ghazaryan A, et al. 2016. Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1857(9), 1373-1379

63.     Nowicka B, et al. 2016. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicology and Environmental Safety 130, 133-145

64.     Gypser S, et al. 2016. Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany. Flora - Morphology, Distribution, Functional Ecology of Plants 220, 103-116

65.     Eilers U, et al. 2016. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. Journal of Plant Physiology 192(15), 64-70

66.     Marečková M, et al. 2016. Effects of short-term low temperature stress on chlorophyll fluorescence transients in Antarctic lichen species. Czech Polar Reports 6 (1), 54-65

67.     简敏菲,汪斯琛,余厚平,李玲玉,简美锋,余冠军.2016. Cd2+Cu2+胁迫对黑藻(Hydrilla verticillata)的生长及光合荧光特性的影响. 生态学报 36(6)

68.     Zeng Y, et al. 2015. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. International Journal of Systematic and Evolutionary Microbiology, DOI: 10.1099/ijs.0.000272

69.     Mascalchi M, et al. 2015. Preliminary investigation of combined laser and microwave treatment for stone biodeterioration. Studies in Conservation 60:sup1, 19-27

70.     Thangaraj G, et al. 2015. Antarctic strain of green filamentous alga Zygnema sp. shows a high resistance to photoinhibition under simulated polar conditions. Czech Polar Reports 5 (2), 176-184

71.     Scibilia L, et al. 2015. Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Research 12, 170-181

72.     Augustynowicz J, et al. 2015. Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae). Environmental Science and Pollution Research 22(13), 9742-9748

73.     Khanal N, et al. 2015. Acquisition of freezing tolerance in Arabidopsis and two contrasting ecotypes of the extremophile Eutrema salsugineum (Thellungiella salsuginea). Journal of Plant Physiology 180, 35–44

74.     Tanaka H, et al. 2015. Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals, The partial involvement of GENOMES UNCOUPLED 1. Plant Science 231, 20–29

75.     Maslaňáková I, et al. 2015. Differences Between Sensitivity of Mycobiont and Photobiont of Cladonia sp. Lichens to Different Types of Nitrogen Exposure. Water, Air, & Soil Pollution, DOI: 10.1007/s11270-015-2512-5

76.     Kato K, et al. 2015. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. Photosynthesis Research, DOI: 10.1007/s11120-015-0144-7

77.     Dooley F D, et al. 2015. Tolerance of Phyllospadix scouleri seedlings to hydrogen sulfide. Aquatic Botany 123, 72–75

78.     Quaas T, et al.2015. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Journal of Plant Physiology 172, 92–103

79.     Osticioli I, et al. 2015. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd, YAG lasers, comparison among different pulse durations and wavelengths. Appl. Phys. A, DOI 10.1007/s00339-014-8933-y

80.     Petrzik K, et al. 2015. Platinum Anniversary, Virus and Lichen Alga Together More than 70 Years. PLOS ONE, DOI: 10.1371/journal.pone.0120768

81.     Laviale M, et al. 2015. Response of intertidal benthic microalgal biofilms to a coupled light–temperature stress, evidence for latitudinal adaptation along the Atlantic coast of Southern Europe. Environmental Microbiology, DOI:10.1111/1462-2920.12728

82.     Ezequiel J, et al. 2015. Photoacclimation state determines the photobehaviour of motile microalgae, The case of a benthic diatom. Journal of Experimental Marine Biology and Ecology 468, 11–20

83.     Fujise L, et al. 2015. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals. PLoS ONE 9(12), e114321. DOI: 10.1371/journal.pone.0114321

84.     Leal M C, et al. 2015. Concurrent imaging of chlorophyll fluorescence, Chlorophyll a content and green fluorescent proteins-like proteins of symbiotic cnidarians. Marine Ecology, DOI: 10.1111/maec.12164

85.     简敏菲,汪斯琛,余厚平,李玲玉,简美锋,余冠军. 2015. 鄱阳湖南矶山湿地沉水植物活体的光合荧光特性. Journal of Resources and Ecology6(1)052-059

86.     Sehnal L, et al. 2014. Effect of temperature and increased concentration of CO2 on growth and photosynthetic activity of polar alga Trebouxia sp. Czech Polar Reports 4 (1), 47-56

87.     Balarinová K, et al. 2014. Changes in photosynthesis, pigment composition and glutathione contents in two Antarctic lichens during a light stress and recovery. Photosynthetica 52(4), 538-547

88.     Schmollinger S, et al. 2014. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism. The Plant Cell 26(4), 1410-1435

89.     Gupta E, et al. 2014. Evolutionary legacy response observed in algae and bryophytes following hydrogen sulfide administration. Toxicological & Environmental Chemistry 96(3), 442-450

90.     Trnková K, et al. 2014. Changes in spectral properties and chlorophyll fluorescence of Nostoc commune colonies from Svalbard during dehydration and supplemental UV-B stress. In Jan Kavan, Alexandra Bernardová. Polar Ecology Conference 2014. České Budějovice, Neuveden, 149-150

91.     Zeng Yet al. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. PNAS, 111(21), 7795–7800

92.     Conti S, et al. 2014. Comparative analysis of heterogeneity of primary photosynthetic processes within fruticose lichen thalli, Preliminary study of interspecific differences. Czech polar reports 4 (2), 149-157

93.     Fukuda S. et al. 2014. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment. Photosynthesis Research, DOI: 10.1007/s11120-014-9976-9

94.     Perin G. et al. 2014. Biotechnological Optimization of Light Use Efficiency in Nannochloropsis Cultures for Biodiesel Production. Chemical Engineering Transactions 37, 763-768

95.     Pichrtová M. et al. 2014. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiology Ecology, DOI: 10.1111/1574-6941.12288

96.     Murchie E.H. et al. 2013. Chlorophyll fluorescence analysis, a guide to good practice and understanding some new applications. Journal of Experimental Botany, DOI: 10.1093/jxb/ert208

97.     Ferimazova N. et al. 2013. Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Photosynthesis Research 116(1), 79 – 91

98.     Dooley F.D. et al. 2013. Tolerance and response of Zostera marina seedlings to hydrogen sulfide. Aquatic Botany 105, 7 – 10

99.     Glaesener A.G. et al. 2013. Iron economy in Chlamydomonas reinhardtii. Front Plant Sci. 4, 337

100.  Pilát Z. et al. 2013. Optical trapping of microalgae at 735–1064 nm, Photodamage assessment. Journal of Photochemistry and Photobiology B, Biology 121, 27 – 31

101.  Osticioli I. et al. 2013. Potential of chlorophyll fluorescence imaging for assessing bio–viability changes of biodeteriogen growths on stone monuments, Proc. SPIE 8790, Optics for Arts, Architecture, and Archaeology IV

102.  Malasarn D. et al. 2013. Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. Journal of Biological Chemistry 288, 10672 – 10683

103.  Ciszewski D. et al. 2013. Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environmental Monitoring and Assessment 185, 9825 – 9842

104.  Ogawa, T. et al. 2013. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis. Plant Cell Physiol. 54(7), 1164 – 1171

105.  Baba, M. et al. 2012. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil–producing green alga Botryococcus braunii. Bioresource Technology 109, 266270

106.  Elster, J. et al. 2012. Impact of warming on Nostoc colonies (Cyanobacteria) in a wet hummock meadow, Spitsbergen. Polish Polar Research 33(4), 395 – 420

107.  Weiß, C. et al. 2012. Effects of rare codon clusters on the expression of a high–turnover chloroplast protein in Chlamydomonas reinhardtii. Journal of Biotechnology 160(3–4), 105 – 111

108.  Ellawala, C., Asaeda, T. & Kawamura, K. 2011. Influence of flow turbulence on Chara fibrosa, growth, stress, and tissue carbon content. Journal of Freshwater Ecology 26, 507 – 515

109.  Fernández–Marín, B., Míguez, F., Becerril, J. M. & García–Plazaola, J. I. 2011. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses, a case study in Pelvetia canaliculata. BMC plant biology 11, 181

110.  Jančula, D., Maršálková, E. & Maršálek, B. 2011. Organic flocculants for the removal of phytoplankton biomass. Aquaculture International, 1 – 10

111.  Kvíderová, J., Elster, J. & Šimek, M. 2011. In situ response of Nostoc commune sl colonies to desiccation in Central Svalbard, Norwegian High Arctic. Fottea 11(1), 87 – 97

112.  Narayanan, N. N. et al. 2011. Frontiers, The Iron Assimilatory Protein, FEA1, from Chlamydomonas reinhardtii facilitates Iron–Specific metal uptake in yeast and plants. Frontiers in Plant Biotechnology 2, DOI: 10.3389/fpls.2011.00067

113.  Allen, M. D. 2011. Biological links between cofactors, Metabolism, signaling and dynamic relationships between iron, manganese, and chlorophyll in the green alga Chlamydomonas reinhardtii.  Proquest, Umi Dissertation Publishing.

114.  武田圭一. 2010. Exploration of genes that are involved in the functional maintenance of the Photosystem in Synechocystis sp. PCC6803.

115.  Sommer, F. et al. 2010. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal–responsive domains. The Plant Cell Online 22, 4098 – 4113

116.  Work, V. H. et al. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic cell 9, 1251 – 1261

117.  Kupper, H. 2009. Chromium–and copper–induced inhibition of photosynthesis in Euglena gracilis analysed on the single–cell level by fluorescence kinetic microscopy. New Phytologist 182(2), 405 – 420

118.  Oh, M. H. et al. 2009. Effects of Epiphytic Load on the Photosynthetic Performance of a Seagrass, Zostera marina, Monitored In Vivo by Chlorophyll Fluorescence Imaging. Journal of Plant Biology 52, 171 – 175

119.  Ozaki, H. & Sonoike, K. 2009. Quantitative analysis of the relationship between induction kin