Beijing 010-82611269,13671083121
Shandong 0532-82861228,15563963062
Xian 029-81124223
/ En

Lightigo 团队部分参考文献名录

Lightigo 团队部分参考文献名录

Lightigo 团队部分参考文献名录


image.pngLightigo为欧洲工程技术中心(CEITEC)的唯一衍生公司,受欧洲“生命科学与高级材料技术中心”支持,并与其它学术机构如捷克科学院等在生命科学领域、分析化学领域、新材料领域长期合作、共同创新。公司成员均为布尔诺科技大学激光光谱与化学分析实验室的科研专家----因此将与您合作、为您提供服务和支持的,不仅仅是优秀的工程师,更是优秀的科学家。

  Lightigo的激光光谱分析及化学分析实验室起始于1997年,在LIBS应用技术研发领域具有近20年的深厚经验,其代表性产品为FireFly LIBS元素分析系统、DragonFly LIBS元素分析系统、SyncRay 时序控制发生器等。

  北京易科泰生态技术公司作为Lightigo公司在中国的独家代理,以及CEITEC与国内合作的纽带,致力于欧洲先进LIBS应用技术的引进、推广和协同创新,欢迎联系垂询(邮箱:sales@eco-tech.com.cn; support@eco-tech.com.cn; 电话:82611269)

Jozef Kaiser 教授个人简介

image.pngJozef Kaiser 教授2001年获得博士学位,2013年起任布尔诺科技大学正教授。至今发表文章160余篇,引用1800余次。

在师从意大利拉奎拉大学Reale 教授读博期间,参与研发的46.9 nm毛细管放电soft X-ray 激光器于2002年投入使用,成为全球第二大产品。

他在LIBS领域具有20余年科研经验,并一直与世界一流的实验室进行着广泛的合作交流,例如意大利特里亚斯特市的Elettra同步加速器实验室、美国橡树岭国家实验室、沈阳自动化研究所、意大利特里亚斯特市的Elettra同步加速器、瑞典斯德哥尔摩卡罗林斯卡学院、法国巴黎巴斯德研究所等。

Jozef Kaiser 教授同时是捷克-以色列科学研究和创新商会成员、Ioannes Marcus Marci光谱学会主要委员会成员、以及捷克共和国材料科学与工程基金评审理事会成员。

  Jozef Kaiser 教授2013年起领导布尔诺科技大学和CEITEC 的激光光谱学研究,主要方向为LIBS、 rLIBS、stand-off LIBS、DP LIBS、LIBS + LIFS基础应用研究。


植物,藻类,生物,健康,环境等领域:

1.Pavlína Modlitbová, Pavel Pořízka, Jozef Kaiser, Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues, [J] TrAC Trends in Analytical Chemistry Volume 122 January 2020 Article 115729

2.Pavlína Modlitbová, Pavel Pořízka, Sára Střítežská, Štěpán Zezulka, Jozef Kaiser, Detail investigation of toxicity, bioaccumulation, and translocation of Cd-based quantum dots and Cd salt in white mustard, [J] ChemosphereIn press, journal pre-proof.  Available online 12 February 2020 Article 126174, 

3.Pavlína Modlitbová, Antonín Hlaváček, Tereza Švestková, Pavel Pořízka, Jozef Kaiser , The effects of photon up-conversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies, [J], Chemosphere, Volume 225, June 2019, Pages 723-734

4.Pavlína M, Karel N, Pavel P, Jakub K, Přemysl L, Helena Z. G, Kaiser J , Comparative investigation of toxicity and bioaccumulation of Cd -based quantum dots and Cd salt in freshwater plant Lemna minor L. [J], Ecotoxicology and Environmental Safety, 147 (2018) 334–341.

5.Kaiser J, Klus J, Lubal P, Novotný K, Pořízka P, Zlamalova-Gargosova H, Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. [J]. Ecotoxicology and Environmental Safety, 2018, 147: 334-341.

6.D. Prochazka, M. Mazura, O. Samek, K. Rebrošová, J. Kaiser , Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria, [J], Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 139, January 2018, Pages 6-12

7.Krajcarová L, Novotný K, Kummerová M, J. Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS) [J], Talanta 173 (2017) 28–35.

8.Škarková P, et al. 2d distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 107-114.

9.Konecna M,Novotny K, et al. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy Volume 101, 1 November 2014, Pages 220-225

10.Pořízka, P, et al. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review. [J] Sensors 2014, 14(9), 17725-17752

11.Krajcarová, L. ; et. al. Copper Transport and Accumulation in Spruce Stems (Picea abies (L.) Karsten) Revealed by Laser-Induced Breakdown Spectroscopy, [J]. International Journal of Electrochemical Science (2013)

12.Lucie K, Novotny K, Petr B, Ivo P, Petra K, Vojtech A, Madhavi Z. Rene K, Kaiser J, Copper Transport and Accumulation in Spruce Stems Revealed by Laser -Induced Breakdown Spectroscopy, [J]. Electrochemical Science, 8 (2013) 4485 –4504.

13.Zitka, O; Krystofova, O; Hynek, D; Sobrova, P; Kaiser, J; Sochor, J; Zehnalek, J; Babula, P; Ferrol, N;, Kizek, R; Adam, V, Metal Transporters in Plants [M]. Heavy Metal Stress in Plants. 2013: 19-41.

14.Kaiser, J. ; et. al. Trace elemental analysis by laser-induced breakdown spectroscopy-Biological applications, [J].  Surface Science Reports (2012)

15.Kaiser J, Novotny K, Martin M Z, et al. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications [J]. Surface Science Reports, 2012, 67 (11–12): 233-243.

16.Michaela G, Jozef K, Karel N, et al. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum l. leaves [J]. Microscopy Research and Technique, 2011, 74 (9): 845-852.

17.Diopan V, Shestivska V, Zitka O, et al. Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead(II) Ions [J]. Electroanalysis, 2010, 22 (11): 1248-1259. 

18.Kaiser J, Galiova M, Novotny K, et al. Utilization of the Laser Induced Plasma Spectroscopy for monitoring of the metal accumulation in plant tissues with high spatial resolution [J]. Networking IEEE/ACM Transactions on, 2010, 20 (4): 1096-1111. 

19.Krajcarová, L. ; et. al. Mapping of elements distribution in plant samples using LIBS. Journal: 10th Workshop of Physical Chemists and Electrochemists, Faculty of Science MU, ed. Libuše Trnková (2010)

20.Kryštofová, O. ; et. al. An utilizing of laser induced breakdown spectroscopy for metal ions detection, [J]. Listy cukrovarnické a řepařské (2010)

21.Kaiser J, Galiova M, Novotny K, et al. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64 (1): 67-73. 

22.Krystofova O, Shestivska V, Galiova M, et al. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions [J]. Sensors, 2009, 9 (7): 5040-5058. 

23.Kaiser J, Galiova M, Novotny K, et al. Mapping of the heavy -metal pollutants in plant tissues by Laser -Induced Breakdown Spectroscopy [C] Spectrochimica Acta Part B 64 (2009) 67–73.

24.Masařík, M. ; et. al. Metallomics of melanoma animal tissues, [J] International Journal of Molecular Medicine (2009)

25.Galiova M, Kaiser J, Novotny K, et al. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry [J]. Applied Physics A, 2008, 93 (4): 917-922. 

26.Sona K, Pavel R, Olga K, et al. Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions – plants as bioindicators of environmental pollution [J]. Sensors, 2008, 8 (1): 445-463.

27.Stejskal K,Mendelova Z, et al., Study of effects of lead ions on sugar beet [J]. Listy Cukrovarnicke A Reparske, 2008, 124 (4): 116-119.

28.Galiova M, Kaiser J, Novotny K, et al. Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62 (12): 1597-1605.

29.18. Kaiser J, Samek O, Reale L, et al . Monitoring of the heavy -metal hyperaccumulation in vegetal tissues by X -ray radiography and by femto-second laser induced breakdown spectroscopy [J]. Microscopy Research and Technique, 2007, 70 (70): 147-153.

30.Kaiser J, Novotny K, Malina R, et al. Employment of laser spectrometry in heavy metal analysis [J]. Listy Cukrovarnicke A Reparske, 2007, 123: 332-332.


地质领域

31.Klus J, et. al. Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores [J]. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 66-73.

32.Pořízka P, et. al. Detection of fluorine using laser-induced breakdown spectroscopy and Raman spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 277-288.

33.Pořízka, P, et. al. Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy [J]. Journal of Analytical Atomic Spectrometry2017,32, 277-288

34.Pořízka, P, et al. Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis [J] Scientific Reports 2017, 7: 3160.

35.Pořízka, P, et al. Assessment of the most effective part of echelle laser-induced plasma spectra for further classification using Czerny-Turner spectrometer [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 124 (1): 116-123.

36.Proksova K, Novotny K, Kaiser J, et al. Study of elemental distribution in urinary stones by laser ablation inductively coupled plasma mass spectrometry., 10th Workshop of Physical Chemists and Electrochemists, Faculty of Science MU, ed. Libuše Trnková (2010) 


建筑和文物

37.E. Pospíšilováa, K. Novotnýa,b,P. Pořízkac, D. Hradild,e, J. Hradilováe, J. Kaiserc, V. Kanickýa, Depth-resolved analysis of historical painting model samples by means of laser-induced breakdown spectroscopy and handheld X-ray fluorescence,[J]. Spectrochimica Acta Part B, 147 (2018) 100–108

38.Vitkova G, Prokes L, Novotny K, et al. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off, and table-top, laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 101: 191-199. 

39.Vítková, G. ; et. al.,Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural network, [J]. Spectrochimica Acta Part B: Atomic Spectroscopy (2012)

40.Galiová, M. ; et. al. Multiemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spektrometryle, [J] Applied Optics (2010)

41.Hrdlička, A. ; et. al. Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples. [J]. Applied Optics (2010)

材料;交通;矿业;

42.Tomáš Zikmund, Jakub Šalplachta, Aneta Zatočilová, Adam Břínek, Jozef Kaiser,Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples,[J]. NDT & E InternationalVolume 103 April 2019 Pages 111-118

43.Prochazka D, Bilik M, Prochazkova P, et al. Detection of visually unrecognizable braking tracks using laser-induced breakdown spectroscopy, a feasibility study [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 118: 90-97.

44.P. Pořízka et al. Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy, [J]. Journal of Analytical Atomic Spectrometry Issue 10, 2015

45.Prochazka D, Bilik M, Prochazkova P, et al. Detection of tire tread particles using laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 108:1-7. 

46.Vitkova G, Prokes L, Novotny K, et al. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off, and table-top, laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2014, 101: 191-199. 

47.Pořízka, P. ; et. al.High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection, [J]. Review of Scientific Instruments (2014)

48.Pouzar, M. ; et. al. Effect of particle size distribution in laser-induced breakdown spectroscopy analysis of mesoporous V-SiO2 catalysts. [J]. Journal of Analytical Atomic Spectrometry (2011)

49.Hrdlicka A, Kanicky V, Novotny K, et al. Correlation of Acoustic and Optical Emission Signals Produced at 1064 and 532 nm Laser-induced Breakdown Spectroscopy (LIBS) of Glazed Wall Tiles [C]. Spectrochimica Acta Part B: Atomic Spectroscopy (2009)


工业(钢,铝合金)

50.Pořízka, P, et. al. Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy [J]. Journal of Analytical Atomic Spectrometry2017,32, 277-288

51.Klus J, et. al. Application of self-organizing maps to the study of U-Zr-Ti-Nb distribution in sandstone-hosted uranium ores [J]. Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 131: 66-73.

52.Sládková L, et al. Improvement of the Laser-Induced Breakdown Spectroscopy method sensitivity by the usage of combination of Ag-nanoparticles and vacuum conditions [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2017, 127: 48-55.

53.Klus J, et al. Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 123(1): 143-149.

54.Pořízka P, et al. Laser-Induced Breakdown Spectroscopy coupled with chemometrics for the analysis of steel: The issue of spectral outliers filtering [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 113: 114-120.

55.Porizka P, Rocnakova I, Klus J, et al. Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2015, 30 (10): 2099-2106.

56.Porizka P, Klessen B, Kaiser J, et al. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection [J]. Review of Scientific Instruments, 2014, 85 (7): 073104-073104-8. 


其它 (技术研究;纳米材料分析;等)

57.Skočovská, K. ; et. al. , Skočovská K, et al. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis [J] Review of Scientific Instruments, 2016, 87 (4).

58.Klus J, et al., Effect of experimental parameters and resulting analytical signal statistics in laser-induced breakdown spectroscopy [J] Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 126 (1): 6-10.

59.Ryvolová, M. ; et. al. Modern Micro and Nanoparticle-Based Imaging Techniques. [J]. Sensors (2012)

60.D Prochazka, J Kaiser, K Novotny.; et al., Recent development of double pulse laser induced breakdown spectroscopy (DP-LIBS) setup., [J]. J Biochem Tech (2010) 2(5):S116-S117

61.Novotny J, Malina R, Kaiser J, et al. Implementation of an autofocus algorithm based on searching the best in-focus image into a table-top laser-induced breakdown spectroscopy setup [J]. Optical Engineering, 2009, 48 (10): 604-604.

62.Novotny K, Lutzky F, Galiova M, et al. Double pulse laser ablation and plasma: time resolved spectral measurements [J]. Chemicke Listy, 2008, 102 (16).