Beijing 010-82611269,13671083121
Shandong 0532-82861228,15563963062
Xian 029-81124223
HaiNan 13911203439
/ En

IQ-Thermo便携式高光谱成像与红外热成像系统

IQ-Thermo便携式高光谱成像与红外热成像系统

IQ-Thermo便携式高光谱成像与红外热成像系统
  • 发布时间: 2021-03-04 16:14
  • 发布人:
  • 点击量: 847

IQ-Thermo便携式高光谱成像与红外热成像系统 


本系统凭借便携、轻巧、智能化、即开即用、在线测量、实时分析的特点,广泛适用于实验室或野外等多种场景,通过对叶片或冠层水平光谱反射及温度进行高分辨率成像,可应用于快速无损、高通量原位生态遥感监测、植被生物及非生物胁迫监测、植物蒸腾及气孔导度研究、生物多样性监测等,尤其对叶片及冠层尺度植被生长监测、物种多样性调查、环境及生态系统动态变化等具有重要意义。

1.jpg

本系统主要由光谱成像传感器及便携台架组成,成像传感器包括内置推扫智能高光谱成像单元和LWIR红外热成像单元。高光谱成像单元集采集、分析处理、结果可视化等功能特点于一体(ALL-IN-ONE),具备IP等级防护和全自动运行特点,内置WiFi可远程控制,实现无人机值守工作。曾荣获2018年德国设计协会“红点设计奖”—国际公认的全球工业设计顶级奖项、连续两年获得“inVISION全球顶级创意奖”。红外热成像单元具有高达640×512px的像素分辨率及0.03℃超高灵敏度,其低能耗、轻量级、坚固结构设计完美适用于野外复杂严苛条件下原位监测场景。

应用领域:

适用于光合作用研究和植被胁迫研究,农业、林业、生态系统监测等领域。研究内容涉及光合活性、胁迫响应、病虫害监测、农田测绘及普查等

ü  野外原位生态遥感监测

ü  病虫害监测与防治

ü  森林资源调查评估

ü  样方高通量遥感监测

ü  植物表型与形态学研究

ü  作物产量评估及农情监测

ü  作物干旱胁迫监测及灌溉管理

ü  农田测绘及农业普查

ü  作物育种及抗性筛选

ü  生物多样性及种质资源调查

2.jpg

作物冠层温度分析

功能特点

§    系统化一体式设计,轻量便携,适合野外原位生态调查使用

§    智能化高光谱成像传感器,覆盖400-1000nm波段,可计算数十种植被指数图像

§    高性能红外热成像测温系统,温度分辨率0.03℃,配有温度数据专业分析软件,提取感兴趣区域温度动态变化曲线

§    高光谱成像传感器具备GPS模块,便于不同地理位置的数据融合分析 

主要技术指标:

1、      系统化支架设计:集全太阳光谱双光源、成像单元、云台及三脚支架于一体,重约5kg,便携组装、易于操作

2、      400-1000nm智能高光谱成像:集光谱数据采集、自动扫描成像、自动分析处理、可视化分析结果等功能于一体,可通过光谱特征曲线创建App导入相机直接应用,进行性状快速筛选、检测、识别等功能

a)  光圈F/1.7

b)  光谱分辨率7nm

c)  光谱波段:204,可选Bin 2x和Bin 3x

d)  内置GPS,每个高光谱数据立方均自带地理标签,便于精准定位、多源信息融合分析

e)  内置SAM算法,无需任何复杂处理,即可快速实时显示分析结果

f)  自带4.3英寸触摸屏+13个物理按键,可快速实时测量分析得出结果

g)  具备USB或WIFI远程控制功能,可通过USB线缆或无线WIFI在软件中控制相机运行

3、7.5-13.5μm红外热成像成像,非制冷红外焦平面检测器,640×512像素,出厂黑体校准,内置NUC校准,含校准证书温度分辨率0.03℃,9/30/60Hz可选

a)  测温范围:-25℃至+150℃或+40℃至+550℃,可选1500℃

b)  温度灵敏度≤0.03℃(30mK)@ 30℃;

c)  数据传输:USB-3或GigE千兆以太网

d)  光学镜头,可选配6.8mm、9mm、13mm、19mm镜头

e)  具备14种调色板供任意选择,可多样化设置热成像假彩色

f)  具备等温模式、温度预警、ROI分析、温度剖面、3D温度显示、输出报告等功能

g)  支持CSV、非辐射JPEG、辐射JPEG、辐射视频、AVI、MP4等格式输出

h)  防护等级:IP65,适用野外严苛条件下适用

3.jpg

野外使用照片

4.jpg

安装培训

5.jpg

热成像软件截图(左)高光谱数据分析截图(右) 

6.png 

高光谱用于拟南芥表型分析(案例)

 

参考文献:

1)   Jan B , Kelvin A , Dzhaner E , et al. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection[J]. Sensors, 2018, 18(2):441-.

2)   Xiao Z , Wang J . Rapid Nondestructive Defect Detection of Scindapsus aureus Leaves Based on PCA Spectral Feature Optimization[J]. IOP Conference Series Earth and Environmental Science, 2020, 440:032018.

3)   Detection of Diseases on Wheat Crops by Hyperspectral Data

4)   Barreto, Abel & Paulus, Stefan & Varrelmann, Mark & Mahlein, Anne-Katrin. (2020). Hyperspectral imaging of symptoms induced by Rhizoctonia solani in sugar beet: comparison of input data and different machine learning algorithms. Journal of Plant Diseases and Protection. 10.1007/s41348-020-00344-8.

5)   Sajad Kiani, Saskia M. van Ruth, Leo W.D. van Raamsdonk, Saeid Minaei. Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. LWT - Food Science and Technology. 104(2019)61-69.

6)   Edelman, G.J. & Aalders, M.C.G. (2018). Photogrammetry using visible, infrared, hyperspectral and thermal imaging of crime scenes. Forensic Science International. 292. 10.1016/j.forsciint.2018.09.025.

7)   Yuan, X.; Laakso, K.; Davis, C.D.; Guzmán Q., J.A.; Meng, Q.; Sanchez-Azofeifa, A. Monitoring the Water Stress of an Indoor Living Wall System Using the “Triangle Method”. Sensors 2020, 20, 3261.

8)   Kruglikov, N. & Danilenko, I. & Muftakhetdinova, Razilia & Petrova, Evgeniya & Grokhovsky, V.. (2019). Spectral characteristics of the meteoritic material after the modeling of thermal and shock metamorphism. AIP Conference Proceedings. 2174. 020227. 10.1063/1.5134378.


注:本文转载自易科泰,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如有侵权行为,请联系我们,我们会及时删除。